Papers
Topics
Authors
Recent
2000 character limit reached

User-Assistant Bias in LLMs

Published 16 Aug 2025 in cs.CL, cs.AI, and cs.HC | (2508.15815v1)

Abstract: LLMs can bias towards relying on their own or the user's information in chat history, leading to overly stubborn or agreeable behaviors in multi-turn conversations. In this paper, we formalize this model characteristic as user-assistant bias and introduce an 8k multi-turn conversation dataset $\textbf{UserAssist}$, which we use to benchmark, understand and manipulate the user-assistant bias in frontier LLMs. Leveraging $\textbf{UserAssist-test}$, we first benchmark the user-assistant bias of 26 commercial and 26 open-weight models. Commercial models show various levels of user bias. Evaluation on open-weight models reveals significant user bias in the instruction-tuned models, and weak user bias in reasoning (or reasoning-distilled) models. We then perform controlled fine-tuning experiments to pinpoint the post-training recipe contributing to these bias shifts: human preference alignment increases user bias, while training on chain-of-thought reasoning traces decreases it. Finally, we demonstrate that user-assistant bias can be bidirectionally adjusted by performing direct preference optimization (DPO) on $\textbf{UserAssist-train}$, and generalizes well to both in-domain and out-of-domain conversations. Our results provide insights into how the LLM integrates information from different sources, and also a viable way to detect and control model abnormalities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 6 tweets with 28 likes about this paper.

alphaXiv

  1. User-Assistant Bias in LLMs (60 likes, 0 questions)