A BERT-based Hierarchical Classification Model with Applications in Chinese Commodity Classification (2508.15800v1)
Abstract: Existing e-commerce platforms heavily rely on manual annotation for product categorization, which is inefficient and inconsistent. These platforms often employ a hierarchical structure for categorizing products; however, few studies have leveraged this hierarchical information for classification. Furthermore, studies that consider hierarchical information fail to account for similarities and differences across various hierarchical categories. Herein, we introduce a large-scale hierarchical dataset collected from the JD e-commerce platform (www.JD.com), comprising 1,011,450 products with titles and a three-level category structure. By making this dataset openly accessible, we provide a valuable resource for researchers and practitioners to advance research and applications associated with product categorization. Moreover, we propose a novel hierarchical text classification approach based on the widely used Bidirectional Encoder Representations from Transformers (BERT), called Hierarchical Fine-tuning BERT (HFT-BERT). HFT-BERT leverages the remarkable text feature extraction capabilities of BERT, achieving prediction performance comparable to those of existing methods on short texts. Notably, our HFT-BERT model demonstrates exceptional performance in categorizing longer short texts, such as books.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.