Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

GoVector: An I/O-Efficient Caching Strategy for High-Dimensional Vector Nearest Neighbor Search (2508.15694v1)

Published 21 Aug 2025 in cs.DB

Abstract: Graph-based high-dimensional vector indices have become a mainstream solution for large-scale approximate nearest neighbor search (ANNS). However, their substantial memory footprint often requires storage on secondary devices, where frequent on-demand loading of graph and vector data leads to I/O becoming the dominant bottleneck, accounting for over 90\% of query latency. Existing static caching strategies mitigate this issue only in the initial navigation phase by preloading entry points and multi-hop neighbors, but they fail in the second phase where query-dependent nodes must be dynamically accessed to achieve high recall. We propose GoVector, an I/O-efficient caching strategy tailored for disk-based graph indices. GoVector combines (1) a static cache that stores entry points and frequently accessed neighbors, and (2) a dynamic cache that adaptively captures nodes with high spatial locality during the second search phase. To further align storage layout with similarity-driven search patterns, GoVector reorders nodes on disk so that similar vectors are colocated on the same or adjacent pages, thereby improving locality and reducing I/O overhead. Extensive experiments on multiple public datasets show that GoVector achieves substantial performance improvements. At 90% recall, it reduces I/O operations by 46% on average, increases query throughput by 1.73x, and lowers query latency by 42% compared to state-of-the-art disk-based graph indexing systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.