Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AI-Powered Machine Learning Approaches for Fault Diagnosis in Industrial Pumps (2508.15550v1)

Published 21 Aug 2025 in cs.LG

Abstract: This study presents a practical approach for early fault detection in industrial pump systems using real-world sensor data from a large-scale vertical centrifugal pump operating in a demanding marine environment. Five key operational parameters were monitored: vibration, temperature, flow rate, pressure, and electrical current. A dual-threshold labeling method was applied, combining fixed engineering limits with adaptive thresholds calculated as the 95th percentile of historical sensor values. To address the rarity of documented failures, synthetic fault signals were injected into the data using domain-specific rules, simulating critical alerts within plausible operating ranges. Three machine learning classifiers - Random Forest, Extreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM) - were trained to distinguish between normal operation, early warnings, and critical alerts. Results showed that Random Forest and XGBoost models achieved high accuracy across all classes, including minority cases representing rare or emerging faults, while the SVM model exhibited lower sensitivity to anomalies. Visual analyses, including grouped confusion matrices and time-series plots, indicated that the proposed hybrid method provides robust detection capabilities. The framework is scalable, interpretable, and suitable for real-time industrial deployment, supporting proactive maintenance decisions before failures occur. Furthermore, it can be adapted to other machinery with similar sensor architectures, highlighting its potential as a scalable solution for predictive maintenance in complex systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com