Papers
Topics
Authors
Recent
2000 character limit reached

LongRetriever: Towards Ultra-Long Sequence based Candidate Retrieval for Recommendation (2508.15486v1)

Published 21 Aug 2025 in cs.IR

Abstract: Precisely modeling user ultra-long sequences is critical for industrial recommender systems. Current approaches predominantly focus on leveraging ultra-long sequences in the ranking stage, whereas research for the candidate retrieval stage remains under-explored. This paper presents LongRetriever, a practical framework for incorporating ultra-long sequences into the retrieval stage of recommenders. Specifically, we propose in-context training and multi-context retrieval, which enable candidate-specific interaction between user sequence and candidate item, and ensure training-serving consistency under the search-based paradigm. Extensive online A/B testing conducted on a large-scale e-commerce platform demonstrates statistically significant improvements, confirming the framework's effectiveness. Currently, LongRetriever has been fully deployed in the platform, impacting billions of users.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 1 like about this paper.