Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

TPA: Temporal Prompt Alignment for Fetal Congenital Heart Defect Classification (2508.15298v1)

Published 21 Aug 2025 in cs.CV

Abstract: Congenital heart defect (CHD) detection in ultrasound videos is hindered by image noise and probe positioning variability. While automated methods can reduce operator dependence, current machine learning approaches often neglect temporal information, limit themselves to binary classification, and do not account for prediction calibration. We propose Temporal Prompt Alignment (TPA), a method leveraging foundation image-text model and prompt-aware contrastive learning to classify fetal CHD on cardiac ultrasound videos. TPA extracts features from each frame of video subclips using an image encoder, aggregates them with a trainable temporal extractor to capture heart motion, and aligns the video representation with class-specific text prompts via a margin-hinge contrastive loss. To enhance calibration for clinical reliability, we introduce a Conditional Variational Autoencoder Style Modulation (CVAESM) module, which learns a latent style vector to modulate embeddings and quantifies classification uncertainty. Evaluated on a private dataset for CHD detection and on a large public dataset, EchoNet-Dynamic, for systolic dysfunction, TPA achieves state-of-the-art macro F1 scores of 85.40% for CHD diagnosis, while also reducing expected calibration error by 5.38% and adaptive ECE by 6.8%. On EchoNet-Dynamic's three-class task, it boosts macro F1 by 4.73% (from 53.89% to 58.62%). Temporal Prompt Alignment (TPA) is a framework for fetal congenital heart defect (CHD) classification in ultrasound videos that integrates temporal modeling, prompt-aware contrastive learning, and uncertainty quantification.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.