Aura-CAPTCHA: A Reinforcement Learning and GAN-Enhanced Multi-Modal CAPTCHA System (2508.14976v1)
Abstract: Aura-CAPTCHA was developed as a multi-modal CAPTCHA system to address vulnerabilities in traditional methods that are increasingly bypassed by AI technologies, such as Optical Character Recognition (OCR) and adversarial image processing. The design integrated Generative Adversarial Networks (GANs) for generating dynamic image challenges, Reinforcement Learning (RL) for adaptive difficulty tuning, and LLMs for creating text and audio prompts. Visual challenges included 3x3 grid selections with at least three correct images, while audio challenges combined randomized numbers and words into a single task. RL adjusted difficulty based on incorrect attempts, response time, and suspicious user behavior. Evaluations on real-world traffic demonstrated a 92% human success rate and a 10% bot bypass rate, significantly outperforming existing CAPTCHA systems. The system provided a robust and scalable approach for securing online applications while remaining accessible to users, addressing gaps highlighted in previous research.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.