Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Symbolic Reasoning for Visual Narratives via Hierarchical and Semantically Normalized Knowledge Graphs (2508.14941v1)

Published 20 Aug 2025 in cs.MM and cs.CL

Abstract: Understanding visual narratives such as comics requires structured representations that capture events, characters, and their relations across multiple levels of story organization. However, symbolic narrative graphs often suffer from inconsistency and redundancy, where similar actions or events are labeled differently across annotations or contexts. Such variance limits the effectiveness of reasoning and generalization. This paper introduces a semantic normalization framework for hierarchical narrative knowledge graphs. Building on cognitively grounded models of narrative comprehension, we propose methods that consolidate semantically related actions and events using lexical similarity and embedding-based clustering. The normalization process reduces annotation noise, aligns symbolic categories across narrative levels, and preserves interpretability. We demonstrate the framework on annotated manga stories from the Manga109 dataset, applying normalization to panel-, event-, and story-level graphs. Preliminary evaluations across narrative reasoning tasks, such as action retrieval, character grounding, and event summarization, show that semantic normalization improves coherence and robustness, while maintaining symbolic transparency. These findings suggest that normalization is a key step toward scalable, cognitively inspired graph models for multimodal narrative understanding.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube