Leveraging Hardware-Aware Computation in Mixed-Precision Matrix Multiply: A Tile-Centric Approach (2508.14848v1)
Abstract: General Matrix Multiplication (GEMM) is a critical operation underpinning a wide range of applications in high-performance computing (HPC) and AI. The emergence of hardware optimized for low-precision arithmetic necessitates a reevaluation of numerical algorithms to leverage mixed-precision computations, achieving improved performance and energy efficiency. This research introduces an adaptive mixed-precision GEMM framework that supports different precision formats at fine-grained tile/block levels. We utilize the PaRSEC runtime system to balance workloads across various architectures. The performance scales well on ARM CPU-based Fugaku supercomputer, Nvidia GPU-based A100 DGX, and AMD GPU-based Frontier supercomputer. This research aims to enhance computational efficiency and accuracy by bridging algorithmic advancements and hardware innovations, driving transformative progress in various applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.