Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Leveraging Hardware-Aware Computation in Mixed-Precision Matrix Multiply: A Tile-Centric Approach (2508.14848v1)

Published 20 Aug 2025 in cs.DC

Abstract: General Matrix Multiplication (GEMM) is a critical operation underpinning a wide range of applications in high-performance computing (HPC) and AI. The emergence of hardware optimized for low-precision arithmetic necessitates a reevaluation of numerical algorithms to leverage mixed-precision computations, achieving improved performance and energy efficiency. This research introduces an adaptive mixed-precision GEMM framework that supports different precision formats at fine-grained tile/block levels. We utilize the PaRSEC runtime system to balance workloads across various architectures. The performance scales well on ARM CPU-based Fugaku supercomputer, Nvidia GPU-based A100 DGX, and AMD GPU-based Frontier supercomputer. This research aims to enhance computational efficiency and accuracy by bridging algorithmic advancements and hardware innovations, driving transformative progress in various applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: