Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Improving Resource-Efficient Speech Enhancement via Neural Differentiable DSP Vocoder Refinement (2508.14709v1)

Published 20 Aug 2025 in eess.AS and cs.SD

Abstract: Deploying speech enhancement (SE) systems in wearable devices, such as smart glasses, is challenging due to the limited computational resources on the device. Although deep learning methods have achieved high-quality results, their computational cost limits their feasibility on embedded platforms. This work presents an efficient end-to-end SE framework that leverages a Differentiable Digital Signal Processing (DDSP) vocoder for high-quality speech synthesis. First, a compact neural network predicts enhanced acoustic features from noisy speech: spectral envelope, fundamental frequency (F0), and periodicity. These features are fed into the DDSP vocoder to synthesize the enhanced waveform. The system is trained end-to-end with STFT and adversarial losses, enabling direct optimization at the feature and waveform levels. Experimental results show that our method improves intelligibility and quality by 4% (STOI) and 19% (DNSMOS) over strong baselines without significantly increasing computation, making it well-suited for real-time applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube