Making Pose Representations More Expressive and Disentangled via Residual Vector Quantization (2508.14561v1)
Abstract: Recent progress in text-to-motion has advanced both 3D human motion generation and text-based motion control. Controllable motion generation (CoMo), which enables intuitive control, typically relies on pose code representations, but discrete pose codes alone cannot capture fine-grained motion details, limiting expressiveness. To overcome this, we propose a method that augments pose code-based latent representations with continuous motion features using residual vector quantization (RVQ). This design preserves the interpretability and manipulability of pose codes while effectively capturing subtle motion characteristics such as high-frequency details. Experiments on the HumanML3D dataset show that our model reduces Frechet inception distance (FID) from 0.041 to 0.015 and improves Top-1 R-Precision from 0.508 to 0.510. Qualitative analysis of pairwise direction similarity between pose codes further confirms the model's controllability for motion editing.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.