Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

WISE-FUSE: Efficient Whole Slide Image Encoding via Coarse-to-Fine Patch Selection with VLM and LLM Knowledge Fusion (2508.14537v1)

Published 20 Aug 2025 in cs.CV

Abstract: Whole slide images (WSIs) in computational pathology (CPath) pose a major computational challenge due to their gigapixel scale, often requiring the processing of tens to hundreds of thousands of high-resolution patches per slide. This results in prohibitive encoding costs, with preprocessing and training times extending to days or even weeks-making WSI encoding the most significant bottleneck in real-world deployment. In this work, we propose WISE-FUSE, an adaptive WSI encoding framework that leverages pathology-domain vision-LLMs and LLMs to address this challenge by selectively processing diagnostically relevant regions. WISE-FUSE first computes similarity scores between low-resolution patches and class-specific textual descriptions using a knowledge distillation mechanism that preserves fine-grained diagnostic features. Based on these similarity scores, we select a small subset of informative regions for the target task, which quickly eliminates irrelevant patches at the coarse level. The corresponding high-resolution patches are then selectively encoded and fused with textual embeddings to reinforce diagnostic context. Extensive experiments demonstrate that WISE-FUSE reduces WSI encoding time by over threefold while achieving diagnostic performance comparable to or surpassing that of exhaustive patch processing, offering a scalable and practical solution for CPath.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube