Papers
Topics
Authors
Recent
2000 character limit reached

Detecting Reading-Induced Confusion Using EEG and Eye Tracking (2508.14442v1)

Published 20 Aug 2025 in cs.HC and cs.AI

Abstract: Humans regularly navigate an overwhelming amount of information via text media, whether reading articles, browsing social media, or interacting with chatbots. Confusion naturally arises when new information conflicts with or exceeds a reader's comprehension or prior knowledge, posing a challenge for learning. In this study, we present a multimodal investigation of reading-induced confusion using EEG and eye tracking. We collected neural and gaze data from 11 adult participants as they read short paragraphs sampled from diverse, real-world sources. By isolating the N400 event-related potential (ERP), a well-established neural marker of semantic incongruence, and integrating behavioral markers from eye tracking, we provide a detailed analysis of the neural and behavioral correlates of confusion during naturalistic reading. Using machine learning, we show that multimodal (EEG + eye tracking) models improve classification accuracy by 4-22% over unimodal baselines, reaching an average weighted participant accuracy of 77.3% and a best accuracy of 89.6%. Our results highlight the dominance of the brain's temporal regions in these neural signatures of confusion, suggesting avenues for wearable, low-electrode brain-computer interfaces (BCI) for real-time monitoring. These findings lay the foundation for developing adaptive systems that dynamically detect and respond to user confusion, with potential applications in personalized learning, human-computer interaction, and accessibility.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.