Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Survey on Video Anomaly Detection via Deep Learning: Human, Vehicle, and Environment (2508.14203v1)

Published 19 Aug 2025 in cs.CV and cs.AI

Abstract: Video Anomaly Detection (VAD) has emerged as a pivotal task in computer vision, with broad relevance across multiple fields. Recent advances in deep learning have driven significant progress in this area, yet the field remains fragmented across domains and learning paradigms. This survey offers a comprehensive perspective on VAD, systematically organizing the literature across various supervision levels, as well as adaptive learning methods such as online, active, and continual learning. We examine the state of VAD across three major application categories: human-centric, vehicle-centric, and environment-centric scenarios, each with distinct challenges and design considerations. In doing so, we identify fundamental contributions and limitations of current methodologies. By consolidating insights from subfields, we aim to provide the community with a structured foundation for advancing both theoretical understanding and real-world applicability of VAD systems. This survey aims to support researchers by providing a useful reference, while also drawing attention to the broader set of open challenges in anomaly detection, including both fundamental research questions and practical obstacles to real-world deployment.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube