Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Beyond Fixed Morphologies: Learning Graph Policies with Trust Region Compensation in Variable Action Spaces (2508.14102v1)

Published 16 Aug 2025 in cs.LG, cs.RO, cs.SY, and eess.SY

Abstract: Trust region-based optimization methods have become foundational reinforcement learning algorithms that offer stability and strong empirical performance in continuous control tasks. Growing interest in scalable and reusable control policies translate also in a demand for morphological generalization, the ability of control policies to cope with different kinematic structures. Graph-based policy architectures provide a natural and effective mechanism to encode such structural differences. However, while these architectures accommodate variable morphologies, the behavior of trust region methods under varying action space dimensionality remains poorly understood. To this end, we conduct a theoretical analysis of trust region-based policy optimization methods, focusing on both Trust Region Policy Optimization (TRPO) and its widely used first-order approximation, Proximal Policy Optimization (PPO). The goal is to demonstrate how varying action space dimensionality influence the optimization landscape, particularly under the constraints imposed by KL-divergence or policy clipping penalties. Complementing the theoretical insights, an empirical evaluation under morphological variation is carried out using the Gymnasium Swimmer environment. This benchmark offers a systematically controlled setting for varying the kinematic structure without altering the underlying task, making it particularly well-suited to study morphological generalization.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube