Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Categorical Policies: Multimodal Policy Learning and Exploration in Continuous Control (2508.13922v1)

Published 19 Aug 2025 in cs.LG and cs.AI

Abstract: A policy in deep reinforcement learning (RL), either deterministic or stochastic, is commonly parameterized as a Gaussian distribution alone, limiting the learned behavior to be unimodal. However, the nature of many practical decision-making problems favors a multimodal policy that facilitates robust exploration of the environment and thus to address learning challenges arising from sparse rewards, complex dynamics, or the need for strategic adaptation to varying contexts. This issue is exacerbated in continuous control domains where exploration usually takes place in the vicinity of the predicted optimal action, either through an additive Gaussian noise or the sampling process of a stochastic policy. In this paper, we introduce Categorical Policies to model multimodal behavior modes with an intermediate categorical distribution, and then generate output action that is conditioned on the sampled mode. We explore two sampling schemes that ensure differentiable discrete latent structure while maintaining efficient gradient-based optimization. By utilizing a latent categorical distribution to select the behavior mode, our approach naturally expresses multimodality while remaining fully differentiable via the sampling tricks. We evaluate our multimodal policy on a set of DeepMind Control Suite environments, demonstrating that through better exploration, our learned policies converge faster and outperform standard Gaussian policies. Our results indicate that the Categorical distribution serves as a powerful tool for structured exploration and multimodal behavior representation in continuous control.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com