Papers
Topics
Authors
Recent
2000 character limit reached

PENGUIN: Enhancing Transformer with Periodic-Nested Group Attention for Long-term Time Series Forecasting (2508.13773v1)

Published 19 Aug 2025 in cs.LG and cs.AI

Abstract: Long-term time series forecasting (LTSF) is a fundamental task with wide-ranging applications. Although Transformer-based models have made significant breakthroughs in forecasting, their effectiveness for time series forecasting remains debatable. In this paper, we revisit the significance of self-attention and propose a simple yet effective mechanism, Periodic-Nested Group Attention, namely PENGUIN. Our approach highlights the importance of explicitly modeling periodic patterns and incorporating relative attention bias for effective time series modeling. To this end, we introduce a periodic-nested relative attention bias that captures periodic structures directly. To handle multiple coexisting periodicities (e.g., daily and weekly cycles), we design a grouped attention mechanism, where each group targets a specific periodicity using a multi-query attention mechanism. Extensive experiments across diverse benchmarks demonstrate that PENGUIN consistently outperforms both MLP-based and Transformer-based models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.