MUFFIN: Mixture of User-Adaptive Frequency Filtering for Sequential Recommendation (2508.13670v1)
Abstract: Sequential recommendation (SR) aims to predict users' subsequent interactions by modeling their sequential behaviors. Recent studies have explored frequency domain analysis, which effectively models periodic patterns in user sequences. However, existing frequency-domain SR models still face two major drawbacks: (i) limited frequency band coverage, often missing critical behavioral patterns in a specific frequency range, and (ii) lack of personalized frequency filtering, as they apply an identical filter for all users regardless of their distinct frequency characteristics. To address these challenges, we propose a novel frequency-domain model, Mixture of User-adaptive Frequency FIlteriNg (MUFFIN), operating through two complementary modules. (i) The global filtering module (GFM) handles the entire frequency spectrum to capture comprehensive behavioral patterns. (ii) The local filtering module (LFM) selectively emphasizes important frequency bands without excluding information from other ranges. (iii) In both modules, the user-adaptive filter (UAF) is adopted to generate user-specific frequency filters tailored to individual unique characteristics. Finally, by aggregating both modules, MUFFIN captures diverse user behavioral patterns across the full frequency spectrum. Extensive experiments show that MUFFIN consistently outperforms state-of-the-art frequency-domain SR models over five benchmark datasets. The source code is available at https://github.com/ilwoong100/MUFFIN.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.