MACTAS: Self-Attention-Based Module for Inter-Agent Communication in Multi-Agent Reinforcement Learning (2508.13661v1)
Abstract: Communication is essential for the collective execution of complex tasks by human agents, motivating interest in communication mechanisms for multi-agent reinforcement learning (MARL). However, existing communication protocols in MARL are often complex and non-differentiable. In this work, we introduce a self-attention-based communication module that exchanges information between the agents in MARL. Our proposed approach is fully differentiable, allowing agents to learn to generate messages in a reward-driven manner. The module can be seamlessly integrated with any action-value function decomposition method and can be viewed as an extension of such decompositions. Notably, it includes a fixed number of trainable parameters, independent of the number of agents. Experimental results on the SMAC benchmark demonstrate the effectiveness of our approach, which achieves state-of-the-art performance on several maps.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.