Papers
Topics
Authors
Recent
2000 character limit reached

CORENet: Cross-Modal 4D Radar Denoising Network with LiDAR Supervision for Autonomous Driving (2508.13485v1)

Published 19 Aug 2025 in cs.CV and cs.AI

Abstract: 4D radar-based object detection has garnered great attention for its robustness in adverse weather conditions and capacity to deliver rich spatial information across diverse driving scenarios. Nevertheless, the sparse and noisy nature of 4D radar point clouds poses substantial challenges for effective perception. To address the limitation, we present CORENet, a novel cross-modal denoising framework that leverages LiDAR supervision to identify noise patterns and extract discriminative features from raw 4D radar data. Designed as a plug-and-play architecture, our solution enables seamless integration into voxel-based detection frameworks without modifying existing pipelines. Notably, the proposed method only utilizes LiDAR data for cross-modal supervision during training while maintaining full radar-only operation during inference. Extensive evaluation on the challenging Dual-Radar dataset, which is characterized by elevated noise level, demonstrates the effectiveness of our framework in enhancing detection robustness. Comprehensive experiments validate that CORENet achieves superior performance compared to existing mainstream approaches.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.