Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DAASH: A Meta-Attack Framework for Synthesizing Effective and Stealthy Adversarial Examples (2508.13309v1)

Published 18 Aug 2025 in cs.CV and cs.LG

Abstract: Numerous techniques have been proposed for generating adversarial examples in white-box settings under strict Lp-norm constraints. However, such norm-bounded examples often fail to align well with human perception, and only recently have a few methods begun specifically exploring perceptually aligned adversarial examples. Moreover, it remains unclear whether insights from Lp-constrained attacks can be effectively leveraged to improve perceptual efficacy. In this paper, we introduce DAASH, a fully differentiable meta-attack framework that generates effective and perceptually aligned adversarial examples by strategically composing existing Lp-based attack methods. DAASH operates in a multi-stage fashion: at each stage, it aggregates candidate adversarial examples from multiple base attacks using learned, adaptive weights and propagates the result to the next stage. A novel meta-loss function guides this process by jointly minimizing misclassification loss and perceptual distortion, enabling the framework to dynamically modulate the contribution of each base attack throughout the stages. We evaluate DAASH on adversarially trained models across CIFAR-10, CIFAR-100, and ImageNet. Despite relying solely on Lp-constrained based methods, DAASH significantly outperforms state-of-the-art perceptual attacks such as AdvAD -- achieving higher attack success rates (e.g., 20.63\% improvement) and superior visual quality, as measured by SSIM, LPIPS, and FID (improvements $\approx$ of 11, 0.015, and 5.7, respectively). Furthermore, DAASH generalizes well to unseen defenses, making it a practical and strong baseline for evaluating robustness without requiring handcrafted adaptive attacks for each new defense.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.