Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

DianJin-OCR-R1: Enhancing OCR Capabilities via a Reasoning-and-Tool Interleaved Vision-Language Model (2508.13238v1)

Published 18 Aug 2025 in cs.CV

Abstract: Recent advances in large vision-LLMs (LVLMs) have enabled a new paradigm of end-to-end document image parsing, excelling in Optical Character Recognition (OCR) tasks such as text, table, and formula recognition. However, generative LVLMs, similarly to LLMs, are prone to hallucinations--generating words that do not exist in input images. Furthermore, LVLMs are designed for general purposes and tend to be less effective on OCR tasks compared to expert models that are trained on domain-specific datasets. In this paper, we propose DianJin-OCR-R1, a reasoning-enhanced framework designed to address these limitations through training reasoning-and-tool interleaved VLMs. Given a recognition instruction, our DianJin-OCR-R1 model first recognizes the content in the input image by its own OCR capabilities, and then calls other tools (i.e., other expert models) to obtain their results as references, finally looks again the image and rethinks about the reasoning process to provide the final recognized content. Since architectures of expert models are tailored for specific OCR tasks, which makes them less prone to hallucinations, their results can help VLMs mitigate hallucinations. Additionally, expert models are typically smaller in scale and easy to iterate, enabling performance improvements for VLMs at a lower cost. We evaluate our model on ReST and OmniDocBench, and experimental results show that our DianJin-OCR-R1 models consistently outperform their non-reasoning counterparts and expert OCR models, which proves the effectiveness of our method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.