Papers
Topics
Authors
Recent
2000 character limit reached

AutoBnB-RAG: Enhancing Multi-Agent Incident Response with Retrieval-Augmented Generation (2508.13118v1)

Published 18 Aug 2025 in cs.CL and cs.CR

Abstract: Incident response (IR) requires fast, coordinated, and well-informed decision-making to contain and mitigate cyber threats. While LLMs have shown promise as autonomous agents in simulated IR settings, their reasoning is often limited by a lack of access to external knowledge. In this work, we present AutoBnB-RAG, an extension of the AutoBnB framework that incorporates retrieval-augmented generation (RAG) into multi-agent incident response simulations. Built on the Backdoors & Breaches (B&B) tabletop game environment, AutoBnB-RAG enables agents to issue retrieval queries and incorporate external evidence during collaborative investigations. We introduce two retrieval settings: one grounded in curated technical documentation (RAG-Wiki), and another using narrative-style incident reports (RAG-News). We evaluate performance across eight team structures, including newly introduced argumentative configurations designed to promote critical reasoning. To validate practical utility, we also simulate real-world cyber incidents based on public breach reports, demonstrating AutoBnB-RAG's ability to reconstruct complex multi-stage attacks. Our results show that retrieval augmentation improves decision quality and success rates across diverse organizational models. This work demonstrates the value of integrating retrieval mechanisms into LLM-based multi-agent systems for cybersecurity decision-making.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.