Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Perfectly Truthful Calibration Measure (2508.13100v1)

Published 18 Aug 2025 in cs.LG, cs.DS, and stat.ML

Abstract: Calibration requires that predictions are conditionally unbiased and, therefore, reliably interpretable as probabilities. Calibration measures quantify how far a predictor is from perfect calibration. As introduced by Haghtalab et al. (2024), a calibration measure is truthful if it is minimized in expectation when a predictor outputs the ground-truth probabilities. Although predicting the true probabilities guarantees perfect calibration, in reality, when calibration is evaluated on a finite sample, predicting the truth is not guaranteed to minimize any known calibration measure. All known calibration measures incentivize predictors to lie in order to appear more calibrated on a finite sample. Such lack of truthfulness motivated Haghtalab et al. (2024) and Qiao and Zhao (2025) to construct approximately truthful calibration measures in the sequential prediction setting, but no perfectly truthful calibration measure was known to exist even in the more basic batch setting. We design a perfectly truthful calibration measure in the batch setting: averaged two-bin calibration error (ATB). In addition to being truthful, ATB is sound, complete, continuous, and quadratically related to two existing calibration measures: the smooth calibration error (smCal) and the (lower) distance to calibration (distCal). The simplicity in our definition of ATB makes it efficient and straightforward to compute. ATB allows faster estimation algorithms with significantly easier implementations than smCal and distCal, achieving improved running time and simplicity for the calibration testing problem studied by Hu et al. (2024). We also introduce a general recipe for constructing truthful measures, which proves the truthfulness of ATB as a special case and allows us to construct other truthful calibration measures such as quantile-binned l_2-ECE.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.