Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Language-Signal-Vision Multimodal Framework for Multitask Cardiac Analysis (2508.13072v1)

Published 18 Aug 2025 in cs.AI

Abstract: Contemporary cardiovascular management involves complex consideration and integration of multimodal cardiac datasets, where each modality provides distinct but complementary physiological characteristics. While the effective integration of multiple modalities could yield a holistic clinical profile that accurately models the true clinical situation with respect to data modalities and their relatives weightings, current methodologies remain limited by: 1) the scarcity of patient- and time-aligned multimodal data; 2) reliance on isolated single-modality or rigid multimodal input combinations; 3) alignment strategies that prioritize cross-modal similarity over complementarity; and 4) a narrow single-task focus. In response to these limitations, a comprehensive multimodal dataset was curated for immediate application, integrating laboratory test results, electrocardiograms, and echocardiograms with clinical outcomes. Subsequently, a unified framework, Textual Guidance Multimodal fusion for Multiple cardiac tasks (TGMM), was proposed. TGMM incorporated three key components: 1) a MedFlexFusion module designed to capture the unique and complementary characteristics of medical modalities and dynamically integrate data from diverse cardiac sources and their combinations; 2) a textual guidance module to derive task-relevant representations tailored to diverse clinical objectives, including heart disease diagnosis, risk stratification and information retrieval; and 3) a response module to produce final decisions for all these tasks. Furthermore, this study systematically explored key features across multiple modalities and elucidated their synergistic contributions in clinical decision-making. Extensive experiments showed that TGMM outperformed state-of-the-art methods across multiple clinical tasks, with additional validation confirming its robustness on another public dataset.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com