Papers
Topics
Authors
Recent
2000 character limit reached

HierAdaptMR: Cross-Center Cardiac MRI Reconstruction with Hierarchical Feature Adapters (2508.13026v1)

Published 18 Aug 2025 in cs.CV

Abstract: Deep learning-based cardiac MRI reconstruction faces significant domain shift challenges when deployed across multiple clinical centers with heterogeneous scanner configurations and imaging protocols. We propose HierAdaptMR, a hierarchical feature adaptation framework that addresses multi-level domain variations through parameter-efficient adapters. Our method employs Protocol-Level Adapters for sequence-specific characteristics and Center-Level Adapters for scanner-dependent variations, built upon a variational unrolling backbone. A Universal Adapter enables generalization to entirely unseen centers through stochastic training that learns center-invariant adaptations. The framework utilizes multi-scale SSIM loss with frequency domain enhancement and contrast-adaptive weighting for robust optimization. Comprehensive evaluation on the CMRxRecon2025 dataset spanning 5+ centers, 10+ scanners, and 9 modalities demonstrates superior cross-center generalization while maintaining reconstruction quality. code: https://github.com/Ruru-Xu/HierAdaptMR

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.