Design and Analysis of Robust Adaptive Filtering with the Hyperbolic Tangent Exponential Kernel M-Estimator Function for Active Noise Control (2508.13018v1)
Abstract: In this work, we propose a robust adaptive filtering approach for active noise control applications in the presence of impulsive noise. In particular, we develop the filtered-x hyperbolic tangent exponential generalized Kernel M-estimate function (FXHEKM) robust adaptive algorithm. A statistical analysis of the proposed FXHEKM algorithm is carried out along with a study of its computational cost. {In order to evaluate the proposed FXHEKM algorithm, the mean-square error (MSE) and the average noise reduction (ANR) performance metrics have been adopted.} Numerical results show the efficiency of the proposed FXHEKM algorithm to cancel the presence of the additive spurious signals, such as \textbf{$\alpha$}-stable noises against competing algorithms.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.