Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Compact Attention: Exploiting Structured Spatio-Temporal Sparsity for Fast Video Generation (2508.12969v1)

Published 18 Aug 2025 in cs.CV

Abstract: The computational demands of self-attention mechanisms pose a critical challenge for transformer-based video generation, particularly in synthesizing ultra-long sequences. Current approaches, such as factorized attention and fixed sparse patterns, fail to fully exploit the inherent spatio-temporal redundancies in video data. Through systematic analysis of video diffusion transformers (DiT), we uncover a key insight: Attention matrices exhibit structured, yet heterogeneous sparsity patterns, where specialized heads dynamically attend to distinct spatiotemporal regions (e.g., local pattern, cross-shaped pattern, or global pattern). Existing sparse attention methods either impose rigid constraints or introduce significant overhead, limiting their effectiveness. To address this, we propose Compact Attention, a hardware-aware acceleration framework featuring three innovations: 1) Adaptive tiling strategies that approximate diverse spatial interaction patterns via dynamic tile grouping, 2) Temporally varying windows that adjust sparsity levels based on frame proximity, and 3) An automated configuration search algorithm that optimizes sparse patterns while preserving critical attention pathways. Our method achieves 1.6~2.5x acceleration in attention computation on single-GPU setups while maintaining comparable visual quality with full-attention baselines. This work provides a principled approach to unlocking efficient long-form video generation through structured sparsity exploitation. Project Page: https://yo-ava.github.io/Compact-Attention.github.io/

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 8 likes.

Upgrade to Pro to view all of the tweets about this paper: