Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Short-Term Forecasting of Energy Production and Consumption Using Extreme Learning Machine: A Comprehensive MIMO based ELM Approach (2508.12764v1)

Published 18 Aug 2025 in cs.LG and physics.data-an

Abstract: A novel methodology for short-term energy forecasting using an Extreme Learning Machine ($\mathtt{ELM}$) is proposed. Using six years of hourly data collected in Corsica (France) from multiple energy sources (solar, wind, hydro, thermal, bioenergy, and imported electricity), our approach predicts both individual energy outputs and total production (\cyr{including imports, which closely follow energy demand, modulo losses)} through a Multi-Input Multi-Output ($\mathtt{MIMO}$) architecture. To address non-stationarity and seasonal variability, sliding window techniques and cyclic time encoding are incorporated, enabling dynamic adaptation to fluctuations. The $\mathtt{ELM}$ model significantly outperforms persistence-based forecasting, particularly for solar and thermal energy, achieving an $\mathtt{nRMSE}$ of $17.9\%$ and $5.1\%$, respectively, with $\mathtt{R2} > 0.98$ (1-hour horizon). The model maintains high accuracy up to five hours ahead, beyond which renewable energy sources become increasingly volatile. While $\mathtt{MIMO}$ provides marginal gains over Single-Input Single-Output ($\mathtt{SISO}$) architectures and offers key advantages over deep learning methods such as $\mathtt{LSTM}$, it provides a closed-form solution with lower computational demands, making it well-suited for real-time applications, including online learning. Beyond predictive accuracy, the proposed methodology is adaptable to various contexts and datasets, as it can be tuned to local constraints such as resource availability, grid characteristics, and market structures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.