Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Taxonomy of Hierarchical Multi-Agent Systems: Design Patterns, Coordination Mechanisms, and Industrial Applications (2508.12683v1)

Published 18 Aug 2025 in cs.MA and cs.AI

Abstract: Hierarchical multi-agent systems (HMAS) organize collections of agents into layered structures that help manage complexity and scale. These hierarchies can simplify coordination, but they also can introduce trade-offs that are not always obvious. This paper proposes a multi-dimensional taxonomy for HMAS along five axes: control hierarchy, information flow, role and task delegation, temporal layering, and communication structure. The intent is not to prescribe a single "best" design but to provide a lens for comparing different approaches. Rather than treating these dimensions in isolation, the taxonomy is connected to concrete coordination mechanisms - from the long-standing contract-net protocol for task allocation to more recent work in hierarchical reinforcement learning. Industrial contexts illustrate the framework, including power grids and oilfield operations, where agents at production, maintenance, and supply levels coordinate to diagnose well issues or balance energy demand. These cases suggest that hierarchical structures may achieve global efficiency while preserving local autonomy, though the balance is delicate. The paper closes by identifying open challenges: making hierarchical decisions explainable to human operators, scaling to very large agent populations, and assessing whether learning-based agents such as LLMs can be safely integrated into layered frameworks. This paper presents what appears to be the first taxonomy that unifies structural, temporal, and communication dimensions of hierarchical MAS into a single design framework, bridging classical coordination mechanisms with modern reinforcement learning and LLM agents.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.