Papers
Topics
Authors
Recent
2000 character limit reached

Illuminating LLM Coding Agents: Visual Analytics for Deeper Understanding and Enhancement (2508.12555v1)

Published 18 Aug 2025 in cs.LG

Abstract: Coding agents powered by LLMs have gained traction for automating code generation through iterative problem-solving with minimal human involvement. Despite the emergence of various frameworks, e.g., LangChain, AutoML, and AIDE, ML scientists still struggle to effectively review and adjust the agents' coding process. The current approach of manually inspecting individual outputs is inefficient, making it difficult to track code evolution, compare coding iterations, and identify improvement opportunities. To address this challenge, we introduce a visual analytics system designed to enhance the examination of coding agent behaviors. Focusing on the AIDE framework, our system supports comparative analysis across three levels: (1) Code-Level Analysis, which reveals how the agent debugs and refines its code over iterations; (2) Process-Level Analysis, which contrasts different solution-seeking processes explored by the agent; and (3) LLM-Level Analysis, which highlights variations in coding behavior across different LLMs. By integrating these perspectives, our system enables ML scientists to gain a structured understanding of agent behaviors, facilitating more effective debugging and prompt engineering. Through case studies using coding agents to tackle popular Kaggle competitions, we demonstrate how our system provides valuable insights into the iterative coding process.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.