Papers
Topics
Authors
Recent
2000 character limit reached

Reconstructing Subnational Labor Indicators in Colombia: An Integrated Machine and Deep Learning Approach (2508.12514v1)

Published 17 Aug 2025 in econ.EM

Abstract: This study proposes a unified multi-stage framework to reconstruct consistent monthly and annual labor indicators for all 33 Colombian departments from 1993 to 2025. The approach integrates temporal disaggregation, time-series splicing and interpolation, statistical learning, and institutional covariates to estimate seven key variables: employment, unemployment, labor force participation (PEA), inactivity, working-age population (PET), total population, and informality rate, including in regions without direct survey coverage. The framework enforces labor accounting identities, scales results to demographic projections, and aligns all estimates with national benchmarks to ensure internal coherence. Validation against official departmental GEIH aggregates and city-level informality data for the 23 metropolitan areas yields in-sample Mean Absolute Percentage Errors (MAPEs) below 2.3% across indicators, confirming strong predictive performance. To our knowledge, this is the first dataset to provide spatially exhaustive and temporally consistent monthly labor measures for Colombia. By incorporating both quantitative and qualitative dimensions of employment, the panel enhances the empirical foundation for analysing long-term labor market dynamics, identifying regional disparities, and designing targeted policy interventions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.