Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

M3PO: Multimodal-Model-Guided Preference Optimization for Visual Instruction Following (2508.12458v1)

Published 17 Aug 2025 in cs.CL

Abstract: Large Vision-LLMs (LVLMs) hold immense potential for complex multimodal instruction following, yet their development is often hindered by the high cost and inconsistency of human annotation required for effective fine-tuning and preference alignment. Traditional supervised fine-tuning (SFT) and existing preference optimization methods like RLHF and DPO frequently struggle to efficiently leverage the model's own generation space to identify highly informative "hard negative" samples. To address these challenges, we propose Multimodal-Model-Guided Preference Optimization (M3PO), a novel and data-efficient method designed to enhance LVLMs' capabilities in visual instruction following. M3PO intelligently selects the most "learning-valuable" preference sample pairs from a diverse pool of LVLM-generated candidates. This selection is driven by a sophisticated mechanism that integrates two crucial signals: a Multimodal Alignment Score (MAS) to assess external quality and the model's Self-Consistency / Confidence (log-probability) to gauge internal belief. These are combined into a novel M3P-Score, which specifically identifies preferred responses and challenging dispreferred responses that the model might confidently generate despite being incorrect. These high-quality preference pairs are then used for efficient Direct Preference Optimization (DPO) fine-tuning on base LVLMs like LLaVA-1.5 (7B/13B) using LoRA. Our extensive experiments demonstrate that M3PO consistently outperforms strong baselines, including SFT, simulated RLHF, vanilla DPO, and RM-DPO, across a comprehensive suite of multimodal instruction following benchmarks (MME-Bench, POPE, IFT, Human Pref. Score).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.