Papers
Topics
Authors
Recent
2000 character limit reached

Federated Cross-Modal Style-Aware Prompt Generation (2508.12399v1)

Published 17 Aug 2025 in cs.CV

Abstract: Prompt learning has propelled vision-LLMs like CLIP to excel in diverse tasks, making them ideal for federated learning due to computational efficiency. However, conventional approaches that rely solely on final-layer features miss out on rich multi-scale visual cues and domain-specific style variations in decentralized client data. To bridge this gap, we introduce FedCSAP (Federated Cross-Modal Style-Aware Prompt Generation). Our framework harnesses low, mid, and high-level features from CLIP's vision encoder alongside client-specific style indicators derived from batch-level statistics. By merging intricate visual details with textual context, FedCSAP produces robust, context-aware prompt tokens that are both distinct and non-redundant, thereby boosting generalization across seen and unseen classes. Operating within a federated learning paradigm, our approach ensures data privacy through local training and global aggregation, adeptly handling non-IID class distributions and diverse domain-specific styles. Comprehensive experiments on multiple image classification datasets confirm that FedCSAP outperforms existing federated prompt learning methods in both accuracy and overall generalization.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.