Papers
Topics
Authors
Recent
2000 character limit reached

Breaking the Aggregation Bottleneck in Federated Recommendation: A Personalized Model Merging Approach (2508.12386v1)

Published 17 Aug 2025 in cs.DC

Abstract: Federated recommendation (FR) facilitates collaborative training by aggregating local models from massive devices, enabling client-specific personalization while ensuring privacy. However, we empirically and theoretically demonstrate that server-side aggregation can undermine client-side personalization, leading to suboptimal performance, which we term the aggregation bottleneck. This issue stems from the inherent heterogeneity across numerous clients in FR, which drives the globally aggregated model to deviate from local optima. To this end, we propose FedEM, which elastically merges the global and local models to compensate for impaired personalization. Unlike existing personalized federated recommendation (pFR) methods, FedEM (1) investigates the aggregation bottleneck in FR through theoretical insights, rather than relying on heuristic analysis; (2) leverages off-the-shelf local models rather than designing additional mechanisms to boost personalization. Extensive experiments on real-world datasets demonstrate that our method preserves client personalization during collaborative training, outperforming state-of-the-art baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.