Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

LinkAnchor: An Autonomous LLM-Based Agent for Issue-to-Commit Link Recovery (2508.12232v1)

Published 17 Aug 2025 in cs.SE and cs.AI

Abstract: Issue-to-commit link recovery plays an important role in software traceability and improves project management. However, it remains a challenging task. A study on GitHub shows that only 42.2% of the issues are correctly linked to their commits. This highlights the potential for further development and research in this area. Existing studies have employed various AI/ML-based approaches, and with the recent development of LLMs, researchers have leveraged LLMs to tackle this problem. These approaches suffer from two main issues. First, LLMs are constrained by limited context windows and cannot ingest all of the available data sources, such as long commit histories, extensive issue comments, and large code repositories. Second, most methods operate on individual issue-commit pairs; that is, given a single issue-commit pair, they determine whether the commit resolves the issue. This quickly becomes impractical in real-world repositories containing tens of thousands of commits. To address these limitations, we present LinkAnchor, the first autonomous LLM-based agent designed for issue-to-commit link recovery. The lazy-access architecture of LinkAnchor enables the underlying LLM to access the rich context of software, spanning commits, issue comments, and code files, without exceeding the token limit by dynamically retrieving only the most relevant contextual data. Additionally, LinkAnchor is able to automatically pinpoint the target commit rather than exhaustively scoring every possible candidate. Our evaluations show that LinkAnchor outperforms state-of-the-art issue-to-commit link recovery approaches by 60-262% in Hit@1 score across all our case study projects. We also publicly release LinkAnchor as a ready-to-use tool, along with our replication package. LinkAnchor is designed and tested for GitHub and Jira, and is easily extendable to other platforms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.