Papers
Topics
Authors
Recent
2000 character limit reached

Monotone Neural Control Barrier Certificates (2508.12178v1)

Published 16 Aug 2025 in eess.SY and cs.SY

Abstract: This work presents a neurosymbolic framework for synthesizing and verifying safety controllers in high-dimensional monotone dynamical systems using only linear sample complexity, without requiring explicit models or conservative Lipschitz bounds. The approach combines the expressiveness of neural networks with the rigor of symbolic reasoning via barrier certificates, functional analogs of inductive invariants that formally guarantee safety. Prior data-driven methods often treat dynamics as black-box models, relying on dense state-space discretization or Lipschitz overapproximations, leading to exponential sample complexity. In contrast, monotonicity -- a pervasive structural property in many real-world systems -- provides a symbolic scaffold that simplifies both learning and verification. Exploiting order preservation reduces verification to localized boundary checks, transforming a high-dimensional problem into a tractable, low-dimensional one. Barrier certificates are synthesized using monotone neural networks -- architectures with embedded monotonicity constraints -- trained via gradient-based optimization guided by barrier conditions. This enables scalable, formally sound verification directly from simulation data, bridging black-box learning and formal guarantees within a unified neurosymbolic framework. Empirical results on three large-scale benchmarks -- a 1,000-dimensional freeway traffic model, a 50-dimensional urban traffic network, and a 13,000-dimensional power grid -- demonstrate the scalability and effectiveness of the approach in real-world, safety-critical systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.