Papers
Topics
Authors
Recent
2000 character limit reached

Urban AI Governance Must Embed Legal Reasonableness for Democratic and Sustainable Cities (2508.12174v1)

Published 16 Aug 2025 in cs.CY

Abstract: This position paper argues that embedding the legal "reasonable person" standard in municipal AI systems is essential for democratic and sustainable urban governance. As cities increasingly deploy AI systems, concerns around equity, accountability, and normative legitimacy are growing. This paper introduces the Urban Reasonableness Layer (URL), a conceptual framework that adapts the legal "reasonable person" standard for supervisory oversight in municipal AI systems, including potential future implementations of AGI. Drawing on historical analogies, scenario mapping, and participatory norm-setting, we explore how legal and community-derived standards can inform AI decision-making in urban contexts. Rather than prescribing a fixed solution, the URL is proposed as an exploratory architecture for negotiating contested values, aligning automation with democratic processes, and interrogating the limits of technical alignment. Our key contributions include: (1) articulating the conceptual and operational architecture of the URL; (2) specifying participatory mechanisms for dynamic normative threshold-setting; (3) presenting a comparative scenario analysis of governance trajectories; and (4) outlining evaluation metrics and limitations. This work contributes to ongoing debates on urban AI governance by foregrounding pluralism, contestability, and the inherently political nature of socio-technical systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.