Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A layered smart sensing platform for physiologically informed human-exoskeleton interaction (2508.12157v1)

Published 16 Aug 2025 in eess.SY and cs.SY

Abstract: Wearable exoskeletons offer transformative potential to assist mobility across diverse user groups with reduced muscle strength or other forms of impaired mobility. Yet, their deployment beyond laboratory settings remains constrained by sensing systems able to fully capture users' physiological and biomechanical states in real time. We introduce a soft, lightweight smart leg sleeve with anatomically inspired layered multimodal sensing, integrating textile-based surface electromyography (sEMG) electrodes, ultrasensitive textile strain sensors, and inertial measurement units (IMUs). Each sensing modality targets a distinct physiological layer: IMUs track joint kinematics at the skeletal level, sEMG monitors muscle activation at the muscular level, and strain sensors detect skin deformation at the cutaneous level. Together, these sensors provide real-time perception to support three core objectives: controlling personalized assistance, optimizing user effort, and safeguarding against injury risks. The system is skin-conformal, mechanically compliant, and seamlessly integrated with a custom exoskeleton (<20 g total sensor and electronics weight). We demonstrate: (1) accurate ankle joint moment estimation (RMSE = 0.13 Nm/kg), (2) real-time classification of metabolic trends (accuracy = 97.1%), and (3) injury risk detection within 100 ms (recall = 0.96), all validated on unseen users using a leave-one-subject-out protocol. This work demonstrates a lightweight, multimodal sensing architecture for next-generation human-exoskeleton interaction in controlled and semi-structured walking scenarios, with potential for scaling to broader exoskeleton applications towards intelligent, responsive, and personalized wearable robotics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube