Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Leveraging Geometric Insights in Hyperbolic Triplet Loss for Improved Recommendations (2508.11978v1)

Published 16 Aug 2025 in cs.IR and cs.LG

Abstract: Recent studies have demonstrated the potential of hyperbolic geometry for capturing complex patterns from interaction data in recommender systems. In this work, we introduce a novel hyperbolic recommendation model that uses geometrical insights to improve representation learning and increase computational stability at the same time. We reformulate the notion of hyperbolic distances to unlock additional representation capacity over conventional Euclidean space and learn more expressive user and item representations. To better capture user-items interactions, we construct a triplet loss that models ternary relations between users and their corresponding preferred and nonpreferred choices through a mix of pairwise interaction terms driven by the geometry of data. Our hyperbolic approach not only outperforms existing Euclidean and hyperbolic models but also reduces popularity bias, leading to more diverse and personalized recommendations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: