Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

TimeSenCLIP: A Vision-Language Model for Remote Sensing Using Single-Pixel Time Series (2508.11919v1)

Published 16 Aug 2025 in cs.CV

Abstract: Vision-LLMs have shown significant promise in remote sensing applications, particularly for land-use and land-cover (LULC) via zero-shot classification and retrieval. However, current approaches face two key challenges: reliance on large spatial tiles that increase computational cost, and dependence on text-based supervision, which is often not readily available. In this work, we present TimeSenCLIP, a lightweight framework that reevaluate the role of spatial context by evaluating the effectiveness of a single pixel by leveraging its temporal and spectral dimensions, for classifying LULC and ecosystem types. By leveraging spectral and temporal information from Sentinel-2 imagery and cross-view learning with geo-tagged ground-level photos, we minimises the need for caption-based training while preserving semantic alignment between overhead (satellite) and ground perspectives. Our approach is grounded in the LUCAS and Sen4Map datasets, and evaluated on classification tasks including LULC, crop type, and ecosystem type. We demonstrate that single pixel inputs, when combined with temporal and spectral cues, are sufficient for thematic mapping, offering a scalable and efficient alternative for large-scale remote sensing applications. Code is available at https://github.com/pallavijain-pj/TimeSenCLIP

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.