Solving Quadratic Programs via Deep Unrolled Douglas-Rachford Splitting (2508.11869v1)
Abstract: Convex quadratic programs (QPs) are fundamental to numerous applications, including finance, engineering, and energy systems. Among the various methods for solving them, the Douglas-Rachford (DR) splitting algorithm is notable for its robust convergence properties. Concurrently, the emerging field of Learning-to-Optimize offers promising avenues for enhancing algorithmic performance, with algorithm unrolling receiving considerable attention due to its computational efficiency and interpretability. In this work, we propose an approach that unrolls a modified DR splitting algorithm to efficiently learn solutions for convex QPs. Specifically, we introduce a tailored DR splitting algorithm that replaces the computationally expensive linear system-solving step with a simplified gradient-based update, while retaining convergence guarantees. Consequently, we unroll the resulting DR splitting method and present a well-crafted neural network architecture to predict QP solutions. Our method achieves up to 50% reductions in iteration counts and 40% in solve time across benchmarks on both synthetic and real-world QP datasets, demonstrating its scalability and superior performance in enhancing computational efficiency across varying sizes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.