Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

EvoCut: Strengthening Integer Programs via Evolution-Guided Language Models (2508.11850v1)

Published 16 Aug 2025 in cs.AI

Abstract: Integer programming lies at the heart of crucial combinatorial optimization tasks but remains challenging due to its NP-hard nature. An effective approach for practically solving integer programs is the manual design of acceleration cuts, i.e. inequalities that improve solver performance. However, this creative process demands deep expertise and is yet to be automated. Our proposed framework, EvoCut, automates the generation of acceleration cuts by combining LLMs with an evolutionary search. EvoCut (i) initializes a diverse population of candidate cuts via an LLM-based initializer agent; (ii) for each cut empirically evaluates both preservation of the optimal solution and its ability to cut off fractional solutions across a verification set; and (iii) iteratively refines the population through evolutionary crossover and mutation agents. We quantify each cut's utility by its relative reduction in the solver's optimality gap. Our comparisons against standard integer programming practice show that EvoCut reduces optimality gap by 17-57% within a fixed time. It obtains the same solutions up to 4 times as fast, and obtains higher-quality solutions within the same time limit. Requiring no human expert input, EvoCut reliably generates, improves, and empirically verifies cuts that generalize to unseen instances. The code is available at https://github.com/milad1378yz/EvoCut.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube