Language models align with brain regions that represent concepts across modalities (2508.11536v1)
Abstract: Cognitive science and neuroscience have long faced the challenge of disentangling representations of language from representations of conceptual meaning. As the same problem arises in today's LMs, we investigate the relationship between LM--brain alignment and two neural metrics: (1) the level of brain activation during processing of sentences, targeting linguistic processing, and (2) a novel measure of meaning consistency across input modalities, which quantifies how consistently a brain region responds to the same concept across paradigms (sentence, word cloud, image) using an fMRI dataset (Pereira et al., 2018). Our experiments show that both language-only and language-vision models predict the signal better in more meaning-consistent areas of the brain, even when these areas are not strongly sensitive to language processing, suggesting that LMs might internally represent cross-modal conceptual meaning.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.