Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

TRACY: Benchmarking Execution Efficiency of LLM-Based Code Translation (2508.11468v1)

Published 15 Aug 2025 in cs.SE

Abstract: Automatic code translation is a fundamental task in modern software development. While the advent of LLMs has significantly improved the correctness of code translation, the critical dimension of execution efficiency remains overlooked. To address this gap, we introduce TRACY, the first comprehensive benchmark designed to evaluate the execution efficiency of LLM-translated code. TRACY is constructed through an LLM-driven two-stage pipeline: an initial stage generates a suite of stress tests to amplify performance differences, followed by an efficiency-oriented task pruning stage that isolates the efficiency-distinguishing tasks. The resulting benchmark comprises 1,011 code translation tasks across C++, Java, and Python, each accompanied by an average of 22.1 verified reference translations and 10 computationally demanding tests. Our extensive evaluation of 26 representative LLMs reveals that even top-tier LLMs struggle to consistently produce efficient code translations. For instance, Claude-4-think, the leading model for correctness, ranks eighth overall when time efficiency is taken into account, surpassed by several smaller open-source models. We further pinpoint that algorithmic flaws and improper resource handling are the most detrimental, causing a median time slowdown of 5.6$\times$ and memory increase of 12.0$\times$, respectively. Our work underscores the necessity of jointly optimizing for correctness and efficiency in future LLM-based code translation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube