Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-Sensory Cognitive Computing for Learning Population-level Brain Connectivity (2508.11436v1)

Published 15 Aug 2025 in cs.LG

Abstract: The generation of connectional brain templates (CBTs) has recently garnered significant attention for its potential to identify unique connectivity patterns shared across individuals. However, existing methods for CBT learning such as conventional machine learning and graph neural networks (GNNs) are hindered by several limitations. These include: (i) poor interpretability due to their black-box nature, (ii) high computational cost, and (iii) an exclusive focus on structure and topology, overlooking the cognitive capacity of the generated CBT. To address these challenges, we introduce mCOCO (multi-sensory COgnitive COmputing), a novel framework that leverages Reservoir Computing (RC) to learn population-level functional CBT from BOLD (Blood-Oxygen-level-Dependent) signals. RC's dynamic system properties allow for tracking state changes over time, enhancing interpretability and enabling the modeling of brain-like dynamics, as demonstrated in prior literature. By integrating multi-sensory inputs (e.g., text, audio, and visual data), mCOCO captures not only structure and topology but also how brain regions process information and adapt to cognitive tasks such as sensory processing, all in a computationally efficient manner. Our mCOCO framework consists of two phases: (1) mapping BOLD signals into the reservoir to derive individual functional connectomes, which are then aggregated into a group-level CBT - an approach, to the best of our knowledge, not previously explored in functional connectivity studies - and (2) incorporating multi-sensory inputs through a cognitive reservoir, endowing the CBT with cognitive traits. Extensive evaluations show that our mCOCO-based template significantly outperforms GNN-based CBT in terms of centeredness, discriminativeness, topological soundness, and multi-sensory memory retention. Our source code is available at https://github.com/basiralab/mCOCO.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube