Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Remedy for Over-Squashing in Graph Learning via Forman-Ricci Curvature based Graph-to-Hypergraph Structural Lifting (2508.11390v1)

Published 15 Aug 2025 in cs.LG

Abstract: Graph Neural Networks are highly effective at learning from relational data, leveraging node and edge features while maintaining the symmetries inherent to graph structures. However, many real-world systems, such as social or biological networks, exhibit complex interactions that are more naturally represented by higher-order topological domains. The emerging field of Geometric and Topological Deep Learning addresses this challenge by introducing methods that utilize and benefit from higher-order structures. Central to TDL is the concept of lifting, which transforms data representations from basic graph forms to more expressive topologies before the application of GNN models for learning. In this work, we propose a structural lifting strategy using Forman-Ricci curvature, which defines an edge-based network characteristic based on Riemannian geometry. Curvature reveals local and global properties of a graph, such as a network's backbones, i.e. coarse, structure-preserving graph geometries that form connections between major communities - most suitably represented as hyperedges to model information flows between clusters across large distances in the network. To this end, our approach provides a remedy to the problem of information distortion in message passing across long distances and graph bottlenecks - a phenomenon known in graph learning as over-squashing.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com