Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

LETToT: Label-Free Evaluation of Large Language Models On Tourism Using Expert Tree-of-Thought (2508.11280v1)

Published 15 Aug 2025 in cs.CL and cs.AI

Abstract: Evaluating LLMs in specific domain like tourism remains challenging due to the prohibitive cost of annotated benchmarks and persistent issues like hallucinations. We propose $\textbf{L}$able-Free $\textbf{E}$valuation of LLM on $\textbf{T}$ourism using Expert $\textbf{T}$ree-$\textbf{o}$f-$\textbf{T}$hought (LETToT), a framework that leverages expert-derived reasoning structures-instead of labeled data-to access LLMs in tourism. First, we iteratively refine and validate hierarchical ToT components through alignment with generic quality dimensions and expert feedback. Results demonstrate the effectiveness of our systematically optimized expert ToT with 4.99-14.15\% relative quality gains over baselines. Second, we apply LETToT's optimized expert ToT to evaluate models of varying scales (32B-671B parameters), revealing: (1) Scaling laws persist in specialized domains (DeepSeek-V3 leads), yet reasoning-enhanced smaller models (e.g., DeepSeek-R1-Distill-Llama-70B) close this gap; (2) For sub-72B models, explicit reasoning architectures outperform counterparts in accuracy and conciseness ($p<0.05$). Our work established a scalable, label-free paradigm for domain-specific LLM evaluation, offering a robust alternative to conventional annotated benchmarks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.