Papers
Topics
Authors
Recent
2000 character limit reached

A CLIP-based Uncertainty Modal Modeling (UMM) Framework for Pedestrian Re-Identification in Autonomous Driving (2508.11218v1)

Published 15 Aug 2025 in cs.CV and cs.LG

Abstract: Re-Identification (ReID) is a critical technology in intelligent perception systems, especially within autonomous driving, where onboard cameras must identify pedestrians across views and time in real-time to support safe navigation and trajectory prediction. However, the presence of uncertain or missing input modalities--such as RGB, infrared, sketches, or textual descriptions--poses significant challenges to conventional ReID approaches. While large-scale pre-trained models offer strong multimodal semantic modeling capabilities, their computational overhead limits practical deployment in resource-constrained environments. To address these challenges, we propose a lightweight Uncertainty Modal Modeling (UMM) framework, which integrates a multimodal token mapper, synthetic modality augmentation strategy, and cross-modal cue interactive learner. Together, these components enable unified feature representation, mitigate the impact of missing modalities, and extract complementary information across different data types. Additionally, UMM leverages CLIP's vision-language alignment ability to fuse multimodal inputs efficiently without extensive finetuning. Experimental results demonstrate that UMM achieves strong robustness, generalization, and computational efficiency under uncertain modality conditions, offering a scalable and practical solution for pedestrian re-identification in autonomous driving scenarios.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com