Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On Strong and Weak Admissibility in Non-Flat Assumption-Based Argumentation (2508.11182v1)

Published 15 Aug 2025 in cs.AI

Abstract: In this work, we broaden the investigation of admissibility notions in the context of assumption-based argumentation (ABA). More specifically, we study two prominent alternatives to the standard notion of admissibility from abstract argumentation, namely strong and weak admissibility, and introduce the respective preferred, complete and grounded semantics for general (sometimes called non-flat) ABA. To do so, we use abstract bipolar set-based argumentation frameworks (BSAFs) as formal playground since they concisely capture the relations between assumptions and are expressive enough to represent general non-flat ABA frameworks, as recently shown. While weak admissibility has been recently investigated for a restricted fragment of ABA in which assumptions cannot be derived (flat ABA), strong admissibility has not been investigated for ABA so far. We introduce strong admissibility for ABA and investigate desirable properties. We furthermore extend the recent investigations of weak admissibility in the flat ABA fragment to the non-flat case. We show that the central modularization property is maintained under classical, strong, and weak admissibility. We also show that strong and weakly admissible semantics in non-flat ABA share some of the shortcomings of standard admissible semantics and discuss ways to address these.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.